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NAVIER-STOKES EQUATIONS
UNPREDICTABILITY EVEN WITHOUT BUTTERFLIES?

Xavier Mora 

Mathematically, the motion of a fluid is described by the so-called Navier-Stokes equations. In the spirit 
of Newtonian mechanics, these equations should determine the future motion of the fluid out of its 
initial state. However, despite the significant effort made for more than a century, this determinism 
has not yet been mathematically proved nor disproved. This paper offers a general perspective on the 
Navier-Stokes equations, the fourth millennium problem.
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■■ A PRACTICAL-INTEREST PROBLEM

One of the most treasured values of science is its ability 
to predict events. Celestial mechanics is particularly 
remarkable, since it allows us to predict, for instance, 
that on 14 May 2887 an annular solar eclipse will be 
visible from my city immediately after sunrise.

In meteorology, where there 
is a lot of practical interest in 
forecasts, the situation is quite 
different. Despite the remarkable 
advances that have been made in 
this field, predictions still cannot 
be made far enough in advance, 
even about very intense and 
widespread phenomena. Thus, 
hurricane Matthew pummelled across the Caribbean 
Sea between 28 September and 10 October 2016, but the 
phenomenon was not predicted until four days before, 
and even then it was only assigned a 70% probability.

Further, it does not look like data resolution 
or calculation-power are to blame for this. These 
parameters are constantly improved, but this does not 
significantly affect the timeliness of meteorological 
forecasts. Therefore, it is natural to wonder if there 
might be an intrinsic limit on how long in advance 
predictions can be made in this field.

It is not only about the famous «butterfly effect», 
which results from the limited precision of the data. 
What we are putting forward is the possibility that the 
future might be unpredictable even if the data were 
infinitely precise!

It can be argued that meteorological processes are 
very complex. In view of this, it is advisable to bypass 
non-essential complications and consider a simpler 
system – the simpler the better – where the question 
we are posing continues to make sense: whether or 
not there is an intrinsic limit to the time extent of 
predictions.

Let us consider, for instance, 
a closed and immobile container 
completely filled with water. 
Let us assume that just before 
closing the container, we set 
the water in motion with some 
strength. Let us assume also that, 
just after closing the container, 
we knew exactly the magnitude 

and direction of the water velocity at each point. 
Would it then be possible to predict the values of these 
same variables for any time in the future until the water 
becomes practically at rest?

■■ THE EQUATIONS OF MOTION

The possibility of predicting the future in a mechanical 
system is based on the so-called equations of motion. 
In the case of celestial mechanics, we are talking 
about Newton’s second law combined with the law 
of universal gravitation. According to these laws, 
celestial bodies cannot move however they want to. 
The acceleration of each body – the second time-
derivative of its position – is determined by the position 
of all the other bodies in relation to it. As Newton 
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showed, this allows to calculate how the velocities and 
positions of each body will be changing, as long as we 
know the initial values of these same variables.

The extension of these ideas to the case of a fluid 
is not trivial. To begin with, we must decide whether 
we model the fluid as an uninterrupted continuum 
or we consider it to be made of a large number of 
separate particles. Here we will limit ourselves to the 
first option, which is more classical and it is also the 
scenario for the topic of this paper.

The equations of motion for a fluid were obtained 
by Leonhard Euler in the mid-eighteenth century. In 
essence, he did nothing else than applying the principle 
of conservation of mass and Newton’s second law to 
quite a rich collection of material parts of the fluid. We 
can identify a material part as 
the region of space it occupies at 
a given moment. But a moment 
later it will occupy a different one, 
that will depend on the motion of 
the fluid. More specifically, Euler 
considered infinitesimal material 
parts: for each time instant and 
around each point, he considered 
the matter contained within a 
cuboid of infinitesimal edges 
dx, dy, dz. This led him to the 
equations of motion in differential form.

The forces that affect a material part of the fluid are 
divided in two classes: those that act from a distance, 
such as gravity, and those that act by contact with 
the neighbouring material parts, like pressure. Euler 
considered both gravity and pressure, but not another 
contact force taht is essential to deduce, for instance, 
that the water in our container will tend towards rest. 
For that we must include also viscosity, that can be 
understood as an internal friction that acts against 
the differences in velocity. Contact forces associated 
with viscosity were not suitably modelled until well 
into the nineteenth century. This was the (more or less 
independent) work of Claude Navier, Augustin Cauchy, 
Siméon Poisson, Adhémar Barré de Saint-Venant, and 
George Gabriel Stokes.

As a result of their research, it was established that 
the motion of a viscous and incompressible fluid in a 
closed and immobile container can be modelled by using 
what we know today as the «Navier-Stokes equations». 
In vector notation they can be written as follows:

In principle there are two unknowns, velocity u 
and pressure p, which are functions of the position x 
and time t. Position x runs across the whole region Ω 
occupied by the fluid. Time t advances from 0 to +∞. 
To be precise, all the terms of equation 1 except the last 
one should be multiplied by the fluid’s density, but from 
now on we will assume that it is the same everywhere 
and that the units have been chosen so that its value 
is 1. There is also a parameter, v, which depends on 
the fluid and quantifies the degree of viscosity. The 
rest of the notation is common in vector calculus: 
∇ = (∂/∂x,∂/∂y,∂/∂z) is the gradient operator, which we 
use formally as a vector that can be scalarly multiplied 
by another; in particular, ∇·u is the divergence of the 
vector field u, and u·∇ is what we call the advection 

operator; finally, Δ is the Laplace 
operator Δ = ∇·∇.

Equations 1 and 2 must be 
fulfilled at any point in the region 
Ω. On the other hand, equation 
3 refers only to the surface ∂Ω 
that limits Ω: for a viscous 
fluid, velocity must vanish at 
any point of this surface. In the 
spirit of getting rid of certain 
complications caused by equation 
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Hurricane Matthew pummelled across the Caribbean Sea between 
28 September and 10 October 2016, but the phenomenon was not 
predicted until four days before, and even then it was only assigned 
a 70% probability. In the picture, the hurricane on 4 October 2016.
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3, we often consider also the case where Ω is the 
entire space, with no limiting surface. In this case, 
however, one usually adds either an asymptotic 
condition at infinity, or simply a finiteness condition 
for the total (kinetic) energy
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(where u denotes the magnitude of the u vector), or 
perhaps a condition of spatial periodicity in three 
orthogonal directions; in the following explanation we 
will always assume some condition of this kind, even 
if we do not specify it. Finally, equation 4 specifies 
the initial state of motion of the fluid.

So, the question that was formulated above can 
now be expressed as follows: is it true that for each 
initial state u0 there is a unique solution of the 
Navier-Stokes equations, and that it remains defined 
for arbitrarily large times? Next, we will examine 
the efforts that have been made to answer this 
question, mainly by Carl Oseen, Jean Leray, and Olga 
Ladyzhenskaya during the twentieth century.

■■ CLASSICAL SOLUTIONS

The existence and uniqueness of solutions of the 
Navier-Stokes equations for a given initial state can 
be studied by means of the method of successive 
approximations: starting from a first approximation, 
we can introduce it in the non-linear term of 
equation 1 –  the one containing (u·∇)u  – and try 
to solve the resulting equation so as to obtain a new 
approximation; then we can repeat the process with 
the result and so on in the hope that this process 
will take us closer and closer to the exact solution. 
Unlike equation 1, the one we use at each step of 
this iteration is linear (not homogeneous). Related 
to this, its solution can be expressed through an 
integral combination of certain special solutions 
that correspond to point-concentrated instantaneous 
impulses.

Following this path, Oseen and Leray managed to 
deal, among other cases, with the case where Ω is the 
entire space, for which those special solutions can be 
explicitly calculated. Leaving aside some technical 
details, the results they obtained are as follows:

(a)  If the time limit for which a solution is sought 
is small enough, then we have one solution and 
only one.
(b)  In general, the solution cannot be extended 
beyond a certain time T, which can be finite or 
infinite depending on the initial state.
(c)  If T is finite, then the solution develops 
singularities when t approaches T; in other words, 
there are points X of Ω where the velocity becomes 
arbitrarily large as we get closer to (X, T).
In fact, the method of successive approximations 

replaces the differential equations 1-4 by an integral 
equation. This equation allows us to see that, as long 
as there are no singularities, the obtained solutions 
are smooth functions, that is, they are infinitely 
differentiable, and fulfil the differential equations in 
the classical sense.

According to the contrapositive of (c), in order to 
ensure that the solution remains defined for arbitrarily 
large times, it suffices to obtain an upper bound on 
the magnitude that can reach the velocity vector. 
Related to this, it is not difficult to see that the total 
(kinetic) energy of the fluid decreases over time. 
Indeed, as observed by Stokes, multiplying equation 1 
scalarly by u and integrating by parts, we obtain the 
so-called «energy equality»: 

Despite previous significant advances, meteorological predictions 
still cannot be made far enough in advance, even about very 
intense and widespread phenomena. Above, an anticyclonic 
tornado in Simla, Colorado (USA) in June 2015.
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However, the fact that an integral is finite does not 
exclude the possibility that the integrand becomes 
infinite at some point. In other words, the inequality
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that follows from equation 5 is not enough to ensure 
that the solution is global in time.

Having said that, in the two-dimensional case 
(Ω ⊆ R2), the upper bound on
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which also follows from equation 5 allows to derive 
the one mentioned above, thus guaranteeing that the 
solution remains defined for arbitrarily large times, 
whatever the initial state.

In contrast, in the three-dimensional case, the 
temporal globality of the solution has been obtained 
only in the case where the initial energy and 
velocities are small enough, or where the viscosity is 
large enough.

■■ SINGULARITIES AND TURBULENCE

It is interesting to observe that, in practice, predictions 
become difficult precisely in the opposite conditions 
to those of the result we have just discussed; that 
is, for high velocities and low viscosities. Osborne 
Reynolds’s 1883 experiment on turbulence is very 
illustrative of this, since it shows clearly unpredictable 
spacetime developments taking place under these 
conditions.

All this leads to conjecturing that the solutions of 
the Navier-Stokes equations could indeed develop 
singularities, which would be related to complications 
when trying to make detailed predictions about 
turbulent motions.

At least, this was the opinion of Oseen, as well as 
Leray and Ladyzhenskaya. The following quotations 
can be found in Mora (2008).

In 1910, Oseen already expressed himself in the 
following terms:

According to our theory, therefore, it seems likely 
that irregularities may arise at the interior of an 
incompressible viscous, even when both the external 
forces and the initial motion are completely regular.

In his 1927 book he explicitly mentioned the 
possible relationship between singularities and 
turbulence:

The fourth millennium problem got its name from the 
mathematicians Claude-Louis Navier (1785-1836), on the left, and 
George Gabriel Stokes (1819-1903), on the right. As a result of 
their research it was established that the motion of a viscous and 
incompressible fluid can be modelled using what we know today 
as the «Navier-Stokes equations».
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If singularities can arise, then we must obviously 
distinguish between two kinds of motion of a viscous fluid: 
the regular motions, i.e., motions without singularities, 
and the irregular motions, i.e., motions with singularities. 
On the other hand, hydraulics is already distinguishing 
between two kinds of motions: the laminar motions and 
the turbulent ones. This leads us to conjecturing that 
the «laminar» motions of the experiments correspond to 
the «regular» motions of the theory, and the «turbulent» 
motions of the experiments correspond to the «irregular» 
motions of the theory. Only further researches can decide 
whether this conjecture is true.

Regarding Leray, it suffices to say that he adopted 
the name «turbulent solutions» to refer a the 
generalised notion of solution that, as we will see 
below, could extend beyond some types of singularities. 
In addition, he also supported the view that solutions 
could develop singularities:

However, it does not seem possible to deduce from this 
fact that the motion itself remains regular; I even pointed 
out a reason which makes me believe in the existence 
of motions that become irregular after a finite time; 
unfortunately, I have failed to construct an example of 
such a singularity.

Finally, regarding Ladyzhenskaya we quote the 
following text about the lack of uniqueness that, as we 
will see below, could occur after the singularities.

But one cannot exclude the possibility that at some 
moment this smoothness will be destroyed. [...] At such 
catastrophic moments the solution may branch. [...] We 
think that such a branching of the 
solution is possible in the Navier-
Stokes equations.

■■ GLOBALLY DISSIPATIVE WEAK 
SOLUTIONS

Faced with the possibility that 
the solutions of the Navier-
Stokes equations might develop 
singularities, it is natural to 
wonder: can the Navier-Stokes equations make sense 
for velocity fields that contain singularities?

Indeed, the presence of a singularity implies that the 
velocity is not well defined everywhere, even less so for 
its derivatives, so the different terms of the differential 
equations that should determine the future motion of 
the fluid stop making sense.

In this connection, Oseen already observed that 
the integral equation of the method of successive 
approximations can still make sense in the presence of 
singularities. Not only that; in fact, he proved that this 
integral equation could be obtained directly from the 

equations that balance out mass 
and momentum for a finite part of 
material (not infinitesimal, as in 
Euler’s case).

Notably, one of the intermediate 
steps of this deduction corresponds 
to a generalised concept of solution 
that was later adopted by Leray 
and is currently a standard tool 
in the study of partial differential 

equations. These solutions in a more general sense are 
called «weak solutions». Thus, the question that we 
were posing has a positive answer.

On the other hand, it is also true that the Navier-
Stokes equations assume that friction forces depend 
linearly on the spatial derivatives of velocity, which 
might not be true for high values of these derivatives. 
This leads to replacing the equations with some 
variations that do admit global solutions for any initial 
state, and studying the limit of these solutions for a 
particular initial state as we get closer and closer to 
the Navier-Stokes equations.

Despite belonging to a family persecuted by Stalin’s regime, Olga 
Ladyzhenskaya (1922-2004) became one of the most prominent 
figures in the soviet school of partial differential equations. Her 
favourite research topic was the mathematical theory of viscous 
incompressible fluids.
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When developing this idea, Leray was unable to 
guarantee a single limit for the entire sequence of 
perturbed solutions. He only proved the existence of 
subsequences that converge in a particular sense, with 
limits that might change from one subsequence to 
another. Anyway, each of these limits is guaranteed 
to be a weak global solution of the Navier-Stokes 
equations for the given initial state.

The way Leray modified the equations had the 
property that all the perturbed solutions fulfilled 
the energy equality (equation 5). Even so, the sense 
in which the mentioned subsequences converge is 
too weak to guarantee that the limit fulfils the same 
equality. What one can deduce, though, is that the 
obtained weak solutions comply with the so-called 
«energy inequality», where the sign «=» in equation 5 
is replaced by «≤»:
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Note that this inequality is not deduced from the 
fact that u is a solution in the weak sense! Because 

there is no such deduction. More specifically, the 
path we followed for classical solutions – the Stokes 
calculations we indicated in the third section – is not 
valid, since it involves the integral
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which does not make sense in the low-regularity 
conditions assumed by the concept of weak solution.

In view of this, and of the importance of energy 
inequalities, it makes sense to introduce a new 
concept of solution that explicitly asks for this 
inequality to hold, besides fulfilling the equation 
in the weak sense. These are what Leray called 
«turbulent solutions». Instead, we will call them 
«globally dissipative solutions».

■■ LOCALLY DISSIPATIVE WEAK SOLUTIONS

Remember that regular solutions fulfil equation 6 
as an equality. This equality quantifies how energy 
decreases due to viscosity. Therefore, when we 

Let us consider a closed and immobile container completely filled with water, and assume that just before closing the container, we set 
the water in motion with some strength. Let us also assume that, just after closing the container, we knew exactly the magnitude and 
direction of the water velocity at each point. Would it then be possible to predict the values of these same variables for any time in the 
future until the water becomes practically at rest?
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ask a weak solution to fulfil inequality 6, what we 
are saying is: if singularities involve a deviation 
from the energy equality, this deviation must be 
in the direction of producing an additional energy 
decrease.

This restriction is in line with the second law 
of thermodynamics, which in our context refers to 
the dissipation of macroscopic kinetic energy by 
its conversion into microscopic energy. However, 
the second law must be fulfilled not only in the fluid 
as a whole, but also in any part of it.

This naturally leads to a more restrictive concept 
of solution that includes a local version of the energy 
inequality. These solutions, which can be called 
«locally dissipative solutions», were introduced in 
1977 by Vladimir Scheffer. He proved that the weak 
solutions obtained by Leray’s method of perturbation 
fulfil this condition, and used this fact to bound the 
dimension of the set of singularities. Such results 
were later improved by Luis Caffarelli, Robert Kohn, 
and Louis Nirenberg, among others.

■■ CONCLUSION

So, the problem is still, essentially, the one we laid 
out in the second section of this document («The 
equations of motion»); that is, whether or not there is 
a unique solution for each initial state, and whether it 
will remain defined for arbitrarily large times. But we 
have also seen that the concept of solution admits 
of certain variations, so that now it is appropriate to 
consider it also as part of the answer.

We have to admit that this problem is not exactly 
that of the Clay Institute prize. The latter refers to 
the conjecture we formulated in the fourth section 
(«Singularities and turbulence»): clarifying – with a 
demonstration or a counterexample – whether regular 
solutions remain defined for arbitrarily large times or 
whether singularities can develop in finite time.

Note that an example of a solution that develops 
singularities would answer this, but not the 
fundamental one of determinism, since it might still 
happen that the solution admits only one continuation 
within the class of locally dissipative solutions.

Going back to the comparison we made in the 
introduction, the fact is that celestial mechanics is 

neither completely deterministic in the sense that we 
are considering: even in the ideal case of point bodies, 
collisions cannot be ruled out; and, in general, triple 
collisions admit of multiple ways for the motion to be 
continued.

Therefore, in the end, fluid mechanics is not 
so different from celestial mechanics regarding 
determinism. After all, a fluid is consists of a large 
number of molecules that collide very frequently with 
each other. 

NOTE 
This paper is a summarised version of «Les equacions de Navier-Stokes. Un 
repte al determinisme newtonià», by Xavier Mora, published in the Butlletí 
de la Societat Catalana de Matemàtiques in 2008, to which we refer for 
more technical details and detailed bibliographical references. For the latest 
advances, we refer to «On global weak solutions to the Cauchy problem for 
the Navier-Stokes equations with large L3-initial data» (Seregin & Šverák, 
2017) and its references.
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«IN THE END, FLUID MECHANICS IS NOT 

SO DIFFERENT FROM CELESTIAL 

MECHANICS REGARDING DETERMINISM»

A fluid consists of a large number of molecules that collide very 
frequently with each other. In the picture, smoke ascending with a 
horizontal current.
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