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The millennium problems set out by the Clay Mathematics Institute became a stimulus for 
mathematical research. The aim of this article is to highlight some previous challenges that were also 
a stimulus to finding proof for some interesting results. With this pretext, we present three moments 
in the history of mathematics that were important for the development of new lines of research. 
We briefly analyse the Tartaglia challenge, which brought about the discovery of a formula for third 
degree equations; Johan Bernoulli’s problem of the curve of fastest descent, which originated the 
calculus of variations; and the incidence of the problems posed by David Hilbert in 1900, focusing on 
the first problem in the list: the continuum hypothesis.
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The Clay Mathematics Institute has chosen seven 
mathematical problems and is offering a million 
dollars to anyone who can solve one of them. 
Mathematical challenges are not unprecedented, and 
so in this text, we present several preceding historical 
challenges. We have excluded 
controversies such as those 
between Newton and Leibniz, 
D’Alembert and Bernoulli, or 
Cantor and Kronecker and also 
leave aside the prizes offered by 
the academies of science (such 
as those offered by the French or 
the Prussian academies since the 
eighteenth century).

Hence, we will show several 
aspects of the development of 
mathematics from a special 
perspective. Carl Benjamin 
Boyer (1989) and Morris Kline 
(1972) are key references in the 
history of mathematics, but another more informative 
book is that of William Dunham (1990). In addition, 
the website1 of the University of St. Andrews 
(Scotland) is also a very valuable source of historical 
material (mainly biographies).

1  http://www-history.mcs.st-and.ac.uk

■■ TARTAGLIA’S CHALLENGE  

Ancient Mesopotamian mathematicians had already 
formulated a number of instructions (with no 
explanation) to find specific solutions to problems 

that could be described today 
with quadratic equations. 
Speaking in modern terms, if the 
unknown verifies the equation
x2 + px + q = 0, then the solution 
is given by

x =
p
2
±

p
2

2

q  

In the spirit of honesty, here 
we have not only used modern 
notation, but we have also taken 
some liberties with the language, 
because in ancient times p and 
q were always positive amounts 

and positive solutions were sought. 
In principle, the equation could be associated 

with the calculation of an area, thus the use of the 
square. Therefore, it makes sense to consider cubic 
equations associated with the calculation of volumes. 
Indeed, the cubic equation was posed, and even 
solved, geometrically. Such a result arrived thanks 
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to the Persian mathematician 
Omar Khayyam (1048-1131), 
who used conic sections (that is 
to say, ellipses, parabolae, and 
hyperbolae) whose intersections 
provided the roots. On the other 
hand, with patience, the roots 
of any polynomial can always 
be approximated. For instance, 
Leonardo of Pisa (ca. 1170-1250), also known as 
Fibonacci, expressed the approximation to the root 
of a cubic equation. The fact is that, at the end of 
the Medieval era, there were already methods for 
calculating the roots of cubic equations geometrically 
or approximately. However, the expression for 
obtaining them was not known at the time and, 
according to the influential Luca Pacioli (1445-1517), 
finding the formula to a general cubic equation was as 
difficult as squaring the circle.

The argument around the cubic equation arrived 
in 1535. Challenges and betting were common at the 
time. One of the protagonists of the discussion was 
Niccolò Fontana (1500-1557), nicknamed Tartaglia 
(“the stammerer”). He arrived in Venice in 1534 and 
acquired fame as a good mathematician. Apparently, 
he said he could solve some specific instances of cubic 
equations and so, Antonio Maria del Fiore challenged 
Tartaglia. Each opponent proposed a list of thirty 
problems to be solved within a fixed span of time. The 
one who solved fewer problems would pay for dinner 
for the other and as many of their friends as problems 
the winner had solved. The point is that Del Fiore knew 
a formula to solve a type of cubic equation, revealed to 
him by Scipione del Ferro (1465-1526) shortly before 
his death. Therefore, all the problems proposed to 
Tartaglia were incomplete cubic equations. Tartaglia 
understood that Del Fiore had a formula, and so he 
searched for it until he finally discovered it. The day 
the result was to be decided, Tartaglia had solved all 
the problems proposed by Del Fiore, while the latter 
had been unable to solve any of Tartaglia’s.

In current terms, the cubic equation studied by 
Tartaglia was x3+ px + q = 0, although he always 
wrote words instead of the p and q coefficients. The 
solution is provided by the Cardano–Tartaglia formula. 
According to it, x equals:
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After the dispute, it became obvious to everyone that 
Tartaglia had a formula for cubic 
equations, but he did not publish 
it. Girolamo Cardano (1501-1576) 
then started pressuring Tartaglia 
to tell him how to solve cubic 
equations. Finally, Tartaglia told 
him the rule, in code, but under 
the promise to keep it secret. 
However, Cardano did not comply 
and he published the formula in 
the book Ars Magna in 1545. In 

addition to Tartaglia’s solution, the rule for solving the 
general equation x3+ nx2+ px + q = 0, obtained by 
Cardano in collaboration with his disciple Ludovico 
Ferrari (1522-1565), can also be found in the book. The 
fact that the book contained the solution to a general 
quartic equation was even more surprising; Ferrari had 
discovered it using similar techniques to the ones he 
had used when learning to solve cubic equations.

All this work was the starting point for two lines of 
mathematical research. On the one hand, the search 

Niccolò Fontana, nicknamed Tartaglia, told Girolamo Cardano how 
to solve cubic equations, under the promise of keeping it a secret. 
But Cardano did not comply and published the formula in the book 
Ars Magna in 1545. 
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for a formula to solve quintic equations had started. 
After the efforts of many mathematicians over more 
than two centuries, including that of important 
figures such as Joseph-Louis Lagrange (1736-1813), 
the Norwegian Niels Abel (1802-1829) proved the 
impossibility of solving a general equation of degree 
higher than four through radicals. However, the 
story did not end there because the rules for when 
the solution to a quartic equation could be found 
through radicals still remained unknown. Shortly 
before dying in a duel, Évariste Galois (1811-1832) 
wrote a document in which he proved a theory to 
determine whether or not a polynomial equation was 
solvable via radicals. The publication of Galois’s 
document in 1846 can be considered the starting 
point of modern algebra.

On the other hand, there was an important case 
in the formula of cubic equation that occurs when 
(q/2)2 + (p/3)3 < 0. Cardano and Ferrari called this 
«casus irreducibilis». The fact that cubic equations 
always have roots is well known. What happens 
when we also apply the formula in this case? 
Simply, we find expressions involving the cubic and 
square roots of negative numbers. For example, let 
us assume that we already know that one root of 
x3 15x 4 = 0  is x = 4, but if we try to apply the 
rule, we obtain: 

x = 2 + 1213 2 1213
+

Using formal substitutions, we can deduce that:

 
2 ± 1( )3 = 2 ± 121

 
and, consequently, we arrive to:

x = 2 + 1213 2 1213
+

= (2 + 1) + (2 1) = 4

The issue this calculation illustrates is the fact that 
using the square roots of negative numbers can be 
useful. It is the origin of complex numbers. Likewise, 
Cardano and Ferrari realised that, using these strange 
numbers, every cubic equation has three roots and 
every quartic equation has four. It is the first version 
of the so-called «fundamental theorem of algebra»: 
every n degree polynomial has exactly n complex 
roots (taking into account repeated roots). Later, 
complex number research would lead to the theory of 
functions of a complex variable, whose properties are 
very different from the functions of a real variable (for 
example, every differentiable function in a disk can 
be represented by a power series).

■■ THE CURVE OF FASTEST DESCENT 

One of the forerunners of differential calculus, Pierre 
de Fermat (1601-1665), discovered a method for 
calculating maximums and minimums: today we 
say that if point x is a maximum or a minimum for a 
particular smooth function f, then f’(x) = 0. He applied 
this method to the study of light rays, together with 
the principle that states that light travelling between 
two points takes the path requiring the shortest time. 
Thanks to that, he deduced the law of reflection and 
refraction (Snell’s law); the latter assumes that light 
moves more slowly in a denser medium. The fact that 
Snell’s law was later used by Johann Bernoulli (1667-
1748) is significant; he considered a non-homogeneous 
optical medium comprising parallel layers of variable 
density that overlap horizontally in order to find the 
curve of fastest descent. The idea was that light in this 
medium would travel along precisely the curve he was 
looking for, which he called «brachistochrone».

What is the curve of fastest descent? The formal 
definition is as follows: given two points, A and B, in 
a vertical plane, where A is higher than B, the curve of 
fastest descent is the one followed by a given weight 
when it travels from A to B in the shortest possible 

We could say that the curve of fastest descent is the one that 
allows for the optimal design of a slide. Dropping balls on an 
inclined plane and a circumference, Galileo Galilei realised that the 
descent was faster on the latter. In the picture, a device created 
by Francesco Spighi to compare the speed of a ball falling on a 
cycloid and a straight line. It can be found on the Galileo Museum 
in Florence. 
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time under the influence of gravity. In other words, 
the curve of fastest descent is the one that allows for 
the optimal design of a slide. Usually, the first thing 
that comes to mind would be straight line, since 
that is the shortest curve between two points. But 
Galileo Galilei (1564-1642) realized that was not the 
case. Dropping balls on an inclined plane and on a 
circumference, he observed that the descent was faster 
on the circumference.

To understand this properly, let us consider point 
A = (0,0) and B = (1,–1), where we want to discover 
which of all the y = f(x) functions that satisfy f(0) = 0 
and f(1) = –1 has the fastest falling time for a given 
weight (T) following the graph of the function. 
Reasoning using the laws of physics brings us to the 
amount that must be minimised:

T =
1+ f ’ x( )

2
 

2gf x( )

1
 dx

0

were g stands for the gravity constant. Now, following 
Galileo, we can calculate the time taken on different 
curves. For the straight line f(x) = –x, we obtain

T =
1+1
2gx

 dx = 
2
g
= 0.6388

1

0

and for the circumference arc f x( ) = 1 1 x( )2
 

,

T =
1

2g  1 1 x( )2
 ( )3/4  dx = 0.5922

1

0

In other words, Galileo was right. However, 
the circumference is not the brachistochrone either. 
The shortest time is reached when T  =  0.5832. 

In the June 1696 issue of the German journal 
Acta Eruditorum, Johann Bernoulli proposed the 
challenge of finding the brachistochrone to the 
mathematics community. He claimed that he had 
the answer and that it was a curve that is very 
well known to geometers. In May 1697, Bernoulli 
published that four mathematicians had managed to 
prove that the brachistochrone was the cycloid; that 
is, the curve defined by a point of the circumference 
as it rolls along a straight line without slipping (for 
instance, a point on a car’s tyre in contact with the 
pavement). These mathematicians were Gottfried 
Wilhelm Leibniz, Jakob Bernoulli, the Marquis 
de L’Hôpital Guillaume François Antoine, and an 
anonymous mathematician, and each one proved it in 
a different way.

The formal challenge seemed to be an invitation 
especially directed toward Isaac Newton (1643-
1727), so it would not have been surprising if he had 
answered it. Legend says that Newton received the 
problem after a tiring working day at the mint and 
he focused on it for twelve hours until he solved it: 
it was the problem that cost Newton a whole night. 
He answered anonymously, but Bernoulli guessed 
the author when he saw it and claimed he knew it 
was Newton’s work, just as «we know the lion by his 
claw».

The brachistochrone problem was one of the 
first examples of what later became the calculus of 
variations. The goal is to minimise a quantity, time in 
this case, which does not depend on a finite number of 
independent variables, but on the global shape of the 
curve. A typical problem in the calculus of variations 
is the finding of the function that minimises an 
integral such as

 f = F x,  f x( ),  f x( )( ) dx
b

a
 ’

for a given function F(x, y, y’). One might try to apply 
Fermat’s idea: to (somehow) derive the «function» F 
and make F’[f] = 0 in order to obtain a condition of the 
function f. The studies by Leonhard Euler (1707-1783) 
and Joseph-Louis Lagrange (1736-1813) discovered 
that these procedures led to the following condition:

F
y

d
dx

F
y

= 0

The reasoning, however, was not rigorous, and 
we had to wait until the nineteenth century before a 
satisfactory basis for the calculus of variations was 
provided by Karl Weierstrass (1815-1897) and David 
Hilbert (1862-1943).

Meanwhile, mathematicians had proposed 
problems requiring the minimisation of multiple 
integrals, such as those in potential theory, which try 
to minimise the integral

| u x, y, z( ) |2 d x, y, z( )
Ω

between all the functions u using continuous 
partial derivatives in order to verify a condition at 
the boundary of Ω. On the other hand, physicists 
had already applied ideas from the calculus of 
variations to mechanics, leading to the emergence of 
analytical mechanics with both the Lagrangian and 
the Hamiltonian formulation. The generalisation of 
Fermat’s idea underlay this: nature economises all of 
its actions and consequently, all natural phenomena 
have one (or more) quantity that must be minimised.
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■■ HILBERT’S TWENTY-THREE PROBLEMS  

In the summer of 1900, David Hilbert was almost 
at the peak of his career. His résumé included the 
solution to Gordon’s problem about the invariants in 
certain algebraic forms, as well as the impulse he has 
given to algebraic number theory, the axiomatisation 
of geometry, and the justification of Dirichlet’s 
principle under certain hypotheses. He was one of 
the most renowned mathematicians of the time when 
he delivered a lecture at the Second International 
Congress of Mathematicians in Paris.

His lecture, «Mathematical problems» (which can 
be found in Hilbert, 1902) manifested his absolutely 
optimistic mathematical philosophy. In addition, he 
proposed a list of twenty-three unsolved problems 
from every field of mathematics, as examples of 
questions whose resolution he believed would be 
fundamental in the coming century. The list focused 
the efforts of many mathematicians and became very 
influential (without question, because of Hilbert’s 
authority). In short, anyone who solved one of these 
problems acquired a solid reputation.

Mathematics in the new century did not follow 
Hilbert’s research lines exactly. Even he could 

not have guessed the new fields that would soon 
appear, in some cases, such as spectral theory, with 
the help of Hilbert himself. However, a considerable 
part of the mathematical development during the 
twentieth century stemmed from Hilbert’s list. In the 
following section we briefly introduce the first 
problem on the list.

■■ CONTINUUM HYPOTHESIS

At the end of the nineteenth century, Georg Cantor 
(1845-1918) systematically analysed infinity. In his 
theory, two (finite or infinite) sets have the same 
cardinal if a bijection exists between them. Note that, 
when the set is finite, its cardinal is the number of 
elements it contains.

Applying his definition to the set of all positive 
integers, N, and to the set of all rational numbers Q 
(those that can be written as m/n, where m and n are 
integers, and n ≠ 0), he proved that they both had the 
same cardinal. This is the smallest infinite cardinal, 
and is denoted ℵ0. When ℵ0 is the cardinal of a set, 
since a bijection between it and the set of positive 
integers exists, the elements in the set can be written 
as a sequence. It is not too difficult to understand the 
proof that the cardinal of Q is ℵ0 when one knows the 
procedure. We consider m/n a rational number written 
as an irreducible fraction where m and n are positive 
and the sum m + n is a fixed amount. If m + n = 2, then:

1
1
= 1

 
If m + n = 3, then: 

1
2  

and
 

2
1
= 2

If m + n = 4, then:

 
1
3  

and
 

3
1
= 3

2
2
= 1  is not irreducible. If m + n = 5, then: 

1
4

, 2
3

, 3
2  

and
 

4
1
= 4

Evidently, continuing the process for m + n = 6, 7, 
etc. we will include all the positive rational numbers 
(see the figure on the next page).

We must also include 0 and the negative numbers, 
and so we alternate them with the positives. The first 
elements in the sequence that contains all the rational 
numbers are:

 
0, 1,  1, 1

2
, 

1
2

, 2,  2, 1
3
, 

1
3
, 3,  3,…

In 1900, the mathematician David Hilbert proposed a list of twenty-
three unsolved problems from every field in mathematics, to serve 
as examples of questions that would be fundamental in the starting 
century. The photo shows Hilbert – front row, on the right – with 
some friends. 
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Later, Cantor proved that the set of all polynomial 
roots with integer coefficients has the same cardinal.

The issue changed when it was discovered that the 
set R of real numbers (those that can be written with 
decimals even if they are irrational) is larger than ℵ0, 
which was demonstrated by reductio ad absurdum. 
Cantor assumed that all the numbers between 0 and 
1 could be written in a sequence, and found a number 
that did not belong in that sequence. This might be the 
first significant theorem in his theory, and it shows that 
there are different types of infinity. The fact that most 
real numbers are irrational is a consequence of this. 
Moreover, most real numbers are not the root of any 
polynomial with integer coefficients. The result was 
very surprising at the time, taking into account that few 
numbers of this type were known.

Looking closer at his analysis, he proved that there 
are as many real numbers as there are subsets of N. 
However, he did not find any set with a cardinal higher 
than ℵ0 and lower than that of R. Thus, he conjectured 
that the cardinal of R was the second infinite cardinal; 
this is the continuum hypothesis, which states that 
any infinite subset of the set of real numbers can be 
bijected with the set of natural numbers or the set of 
real numbers.

In the following years, a lot of effort was put into 
trying to prove Cantor’s conjecture. They were all 
unsuccessful, and Hilbert posed the problem as the 
first on his list. The solution took time, and is not easy 
to understand.

The first step was taken by Kurt Gödel (1906-
1978). In 1940, he proved that if the usual axiomatic 
system of set theory is consistent, so is the continuum 
hypothesis added to the system. In other words, the 
continuum hypothesis does not contradict the other 
axioms considered in set theory. Therefore, a set 
with a cardinal higher than ℵ0 and lower than the 
cardinal of R cannot be discovered, since it would be 
a contradiction. But this does not prove the continuum 
hypothesis.

We owe the second step to Paul Joseph Cohen 
(1934-2007), who in 1963 proved that the continuum 
hypothesis is in fact different from the other axioms. 
Indeed, using a method he called «forcing», he 
observed that if the axiomatic system of set theory 
is consistent, then it would remain consistent when 
the rejection of the continuum hypothesis was 
incorporated into the system. The conclusion is that 
neither the continuum hypothesis nor its rejection 
can be proved with the usual axiomatic system of the 
set theory. We can add another axiom stating that 
the continuum hypothesis is true (or add a different 
one claiming it is false). With current axioms, our 
ignorance of the matter is absolute.

According to Gödel, that was not the end of the 
problem. What we have seen is that the axioms of 
set theory are insufficient to answer the question and 
they must be complemented with others. In the future, 
mathematicians will add new axioms to the system. 
The criteria for adding them will be that they have 
desirable consequences (according to our mathematical 
intuition) and will not have undesirable consequences. 
Gödel thought that Cantor’s conjecture was false. 
With the new axioms, we will be able to formulate 
the problem of the continuum hypothesis again. 

■■ BEYOND HILBERT’S PROBLEMS

Hilbert’s conference had so many repercussions 
that, in order to commemorate it, the International 
Mathematical Union declared the year 2000 the 
World Mathematical Year and asked prestigious 
mathematicians for lists of problems. Stephen Smale, 
for example, proposed eighteen. But no list has 
received as much attention as the Clay Mathematics 
Institute prize, announced in May 24, 2000. As it 
happened with Hilbert’s list, it contains problems 
from all the great fields of mathematics. Only one, 
the Poincaré conjecture, has been solved. In the 
following articles in this monograph, you can find brief 
introductions to these problems: I invite you to take a 
look for yourselves. 
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Process for expressing positive rational numbers as a sequence.
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