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The Riemann hypothesis is an unproven statement referring to the zeros of the Riemann zeta function. 
Bernhard Riemann calculated the first six non-trivial zeros of the function and observed that they were 
all on the same straight line. In a report published in 1859, Riemann stated that this might very well be 
a general fact. The Riemann hypothesis claims that all non-trivial zeros of the zeta function are on the 
the line x = 1/2. The more than ten billion zeroes calculated to date, all of them lying on the critical line, 
coincide with Riemann’s suspicion, but no one has yet been able to prove that the zeta function does 
not have non-trivial zeroes outside of this line.
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■■ ORIGIN OF THE PROBLEM

The Riemann hypothesis is a still unproven statement 
referring to the function ζ(s), called the «Riemann 
zeta function». Proving that the zeta function is 
zero for negative even integers is not difficult:  
ζ(-2m) = 0, for m ≥ 1, which is why these numbers are 
called «trivial zeros». Bernhard Riemann (1826-1866) 
calculated another six zeros for 
the zeta function and observed 
that all their real parts are equal 
to 1/2:

1 = 0.5 ± i 14.13…,

2 = 0.5 ± i 21.02…, 

3 = 0.5 ± i 25.01… 

In an 1859 report, Riemann 
said that this might be a general fact, although he did 
not know how to justify it. The Riemann hypothesis 
assumes that all non-trivial zeros of the zeta function 
lie on the line x = 1/2, called the «critical line».

The interest in locating the zeros of the Riemann 
zeta function was promoted by the German 
mathematician David Hilbert in 1900. It was the 
eighth item in his list of twenty-three open problems, 
which he presented to the International Congress of 
Mathematicians held in Paris at the beginning of the 
last century. Over the years, the involvement of the 
zeta function in many arithmetical problems has been 
highlighted, and proof of the Riemann hypothesis 

would imply the validity of many numerical results 
that depend on this statement. In particular, the zeta 
function is, by far, the most important analytical tool 
for studying prime numbers.

With the help of computers, more than ten billion 
zeros of the zeta function have been calculated to 
date, all of them lying on the critical line, clearly 
highlighting Riemann’s extraordinary intuition. At the 

same time, extensive research on 
this issue – still insufficient to 
reach the final result – warns us 
of the enormous difficulty of the 
question, and when the Riemann 
hypothesis was included among 
the seven millennium problems, 
the Clay Institute reiterated the 
importance this hundred-year-
old – yet still current – problem 

(Bombieri, 2000; Sarnak, 2005).

■■ THE HARMONIC SERIES AND PRIME NUMBERS 

To introduce the Riemann zeta function, it is useful 
to first consider the harmonic series, obtained by 
summing the inverse of all natural numbers:

n=1

1
n
= 1+ 1

2
+

1
3
+

1
4
+…= 1+ 0.5 + 0. 3̂+ 0.25 +…

The concepts of the arithmetic mean, geometric mean 
and harmonic mean of two numbers were already 
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formulated by the Pythagoreans. The harmonic mean 
h(a,b) of two numbers is defined as the inverse of the 
arithmetic mean of their inverses:

h a,b( ) = 2
1/a 1/b+

.

The name harmonic series comes from the fact that 
each of its terms is the harmonic mean of the two 
neighbouring terms:

 
1
n
=

2
n 1( ) + n +1( )

.

The harmonic series is a divergent series; that is, the 
partial sums can be infinitely large. The medieval 
scholar Nicole Oresme (1323-1382) observed this and 
provided the following proof in the text Quaestiones 
super geometriam Euclidis (Oresme, 1961): it is clear 
that 
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are all larger than 1/2, and so on indefinitely; therefore,
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Later, the mathematician Pietro Mengoli (1626-
1686), full professor of arithmetic of the University of 
Bologna, became interested in adding the inverses of 
the squares of all natural numbers, suspecting that this 
might be a convergent series, because it sums much 
smaller figures. Leonhard Euler (1707-1783) provided 
the exact value:

n=1

1
n2 = 1+ 1

22 +
1
32 +

1
42 +…=

2

6
 .

Replacing the exponent 2 in the series with any real 
number s, a convergent series is obtained for all values 
s > 1. This series was also evaluated by Euler for all 
positive even positive integers; in these numbers, the 
values of the zeta function are expressed as powers 
of π and depend on the so-called Bernoulli numbers, 
which are rational. From the outset, it was obvious that 
the series obtained in this way provided information 

about prime numbers and that its study led to a better 
understanding of what the Greeks had already learned 
about these numbers. From the sum of the geometric 
series 1/ps, Euler obtained the infinite product:

n=1

1
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p P
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 ,

where the symbol P denotes the set of all prime 
numbers. Euler used the previous decomposition for 
the following proof, as an alternative to the one offered 
much earlier by Euclid, regarding the infinite nature of 
the set of all prime numbers. Let us assume that the set 
P = {p1,…, pN} is finite. This would give us

i=1

N
1 1

pi
s

1

=
n=1

1
ns  .

However, for s = 1, the term on the left would represent 
a finite quantity, while the one on the right, as we have 
seen, would represent an infinite quantity. Using reductio 
ad absurdum, we can deduce that P is an infinite set.

Euler – as anyone else could also realise – had 
already noted that prime numbers behave mysteriously: 
there is no formula to calculate the nth prime pn 
directly and, should there be one, it would still be 
impossible to know the distance to the next prime pn + 1 
(Montgomery, 1973). This led to the first questions 
regarding the study of prime numbers being directed 
at obtaining formulae to provide an approximation to 
the number of primes π(x) below a given number when 
x tends to infinity. For instance, there are 25 prime 
numbers under one hundred, 168 under one thousand, 
78,498 under one million, etc., but we do not have an 
explicit formula that can provide the exact value π(x) 
for any value of x. 

After extensively studying prime number tables, 
Carl Friedrich Gauss (1777-1855) conjectured that 
π(x) ~ Li(x) when x → ∞, where the function

 Li x( =)
0

x dt
log t( )

 

denotes the logarithm integral. The conjecture is 
equivalent to the asymptotic formula

x( ) ~ 
x

log x( )
,  x  .

The proof of this conjecture was the prime number 
theorem, first proved in 1896 by Jacques Hadamard 
(1865-1963) and Charles Jean de la Vallée-Poussin (1866-
1962), independently from each other. However, it is 
worth noting the fundamental contribution that Riemann 
had already made to this field before this point.
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■■ THE RIEMANN ZETA FUNCTION 

In 1859, Riemann was elected as a member of the 
Academy of Sciences of Berlin. For his admission, he 
presented the study Über die Anzahl der Primzahlen 
unter einer gegebenen Grösse (“On the number of 
primes less than a given quantity”) (Riemann, 1859). 
The paper, whose manuscript did not exceed six pages, 
suggested that the laws governing the distribution of 
prime numbers largely depend on the behaviour of 
the harmonic series when it is extended to a complex 
variable function. Given a complex number s = x + iy, its 
real and imaginary parts are represented by R(s) = x 
and J(s) = y, respectively, and the entire set of complex 
numbers is represented by ℂ.

Consider the function of the complex variable 
defined by

n=1

1
ns =

1
s( )

 
x s 1

ex 1
  dx ,  s  ,R s( ) > 1 .

0

In the formula, Γ(s) represents the gamma function 
that interpolates the factorial, another typically 

Eulerian creation. The previous series converges in 
the half-plane R(s) > 1, but the integral representation 
of the function it defines allows its analytical extension 
to the entire complex plane. The obtained function is 
the Riemann zeta function, ζ(s), which is only infinite 
at s = 1, where the harmonic series diverges. In fact, 
the behaviour of ζ(s) for R(s) < 0 is determined by the 
behaviour of ζ(s) for R(s) > 1. The values of ζ(s) that 
provide more information are located in the so-
called critical strip, defined by 0 ≤ R(s) ≤ 1. The axis 
of symmetry of the critical strip is the straight line 
R(s) = 1/2, called the critical line. Evaluating the zeta 
function for negative integers, we obtain formulae 
equivalent to Euler’s and, particularly, we obtain the 
result that ζ(–2m) = 0, for every value of m ≥ 1; for this 
reason, even negative integers are called the trivial 
zeros of the zeta function.

Riemann stated that the zeta function has an infinite 
number of zeros on the critical strip, and offered an 
estimate of the number of zeros of bounded height. 
According to Riemann, we write:

t( ) =
s
2  

s
2

s( ) ,  s = 1
2
+ i t .: Γ .

The following comment about the zeros in ξ(t) can be 
found in Riemann (1859):

[...] it is very probable that all roots are real. Certainly one 
would wish for a stricter proof here; I have meanwhile 
temporarily put aside the search for this after some 
fleeting futile attempts, as it appears unnecessary for the 
next objective of my investigation.

The statement, according to which all non-trivial 
zeros of the Riemann zeta function are located in the 
critical line, is known as the Riemann hypothesis (RH):

HR( )      ( ) = 0,  0 R ( ) 1,    R ( ) = 1
2

 .

Figure 1 represents the level curves of the zeros in 
the real (red) and imaginary (blue) sections of ζ(s). The 
zeros, represented with a black dot, are located in the 
intersections of the two curves. The two first trivial 
zeros and the first ten non-trivial zeros can be seen, as 
well as their symmetrical points, all of these on the 
critical line.

The central result obtained by Riemann in his 
paper was an asymptotic formula for calculating π (x) 
that connects the number of primes under a particular 
quantity with the zeros of the zeta function:

x( )
n=1

N μ n( )
n

 Li x
1
n( ) =

n=1

N  

Li x n( ) + 0 1( ) ,

In 1644, Pietro Mengoli (1626-1686), a professor of arithmetic of 
the University of Bologna, developed an interest in the sum of the 
inverses of the squares of natural numbers. The year 1735, Leonhard 
Euler (1707-1783), in the picture, provided the exact value of this sum.
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where μ(n) denotes the Möbius function, defined 
according to μ(n) = (–1)k, if n is the product of k ≥ 0 
different primes, and μ(n) = 0 otherwise.

Riemann’s formula contains three types of terms: 
a) Terms that do not increase when x increases: 
included in 0(1); b) terms that increase when x 
increases: Li (x1/n); and c) terms that increase in 
absolute value when x increases, oscillating in sign: 
Li (xρ/n). Riemann named these oscillatory terms 
«periodical», and his interpretation was that they are 
the cause of the experimentally observed fluctuations 
in the quantity of primes contained in each interval 
(Du Sautoy, 2003; Montgomery, 1973).

Riemann’s paper was, and still is, remarkably 
influential. Jacques Hadamard claimed to have needed 
three decades to understand its content and he proved 
all but one of Riemann’s statements: the Riemann 
hypothesis. In 1914, Godfrey Harold Hardy (1877-
1947) proved that the function ξ(t) had an infinite 
number of real zeros; equivalently, the Riemann zeta 
function has infinite zeros in the critical line.

■■ THE HILBERT–PÓLYA CONJECTURE

The so-called Hilbert–Pólya conjecture is based on 
a popular belief. It proposes a spectral interpretation 
of the non-trivial zeros of the Riemann zeta function; 
that is, there should be a linear operator, Δ, whose 
eigenvalues relate to the non-trivial zeros of the zeta 
function in the following way:

	 zero in ζ ↔ Δ eigenvalues

=
1
2
+ i       = 1( ) = 1

4
+ 2 .

The Δ operator would be positive and written as 
Δ = D(1 – D), with i(D – 1/2) being a self-adjoint linear 
operator; therefore, the knowledge of such operators 
would allow us to state that their eigenvalues γ would 
be real numbers and the Riemann hypothesis would 
be proven.

It is commonly said that Hilbert called the set 
of eigenvalues of an operator the «spectrum», by 
analogy with the spectral lines produced by the 
radiation frequencies of atoms. Later, quantum 
mechanics would verify this interpretation: the 
spectral lines correspond to the eigenvectors of 
self-adjoint operators (which extend the properties 
of real symmetric matrices to the complex field), 
provided by the Hamiltonian of mechanical-quantum 

In 1859, Bernhard Riemann (1826-1866) was elected member of 
the Academy of Sciences of Berlin. His admission monograph was 
devoted to the laws governing the distribution of prime numbers. 
In the picture, a portrait of the German mathematician.

Figure 1. The first zeros of the Riemann zeta function. 
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systems. Remember that Max Born (1882-1970), Werner 
Heisenberg (1901-1976), and John von Neumann (1903-
1957) were Hilbert’s students in Göttingen. 

The Hilbert–Pólya conjecture has given rise to 
several physical and artistic interpretations of the 
Riemann hypothesis. For instance, the fact that we can 
calculate the spectrum of an unknown operator has 
been compared to listening to music without knowing 
which instrument is playing it.

■■ HASSE–WEIL ZETA FUNCTIONS

The spectral interpretation of the zeros of the zeta 
function has also proven to be true in a very different 
context: for certain zeta functions arising from the 
study of polynomial equations. The zeta function of 
a complex variable, ζ(X,s) representing the number 
of points in the variety or the number of solutions of 
the system that defines it, can be associated to any 
projective and smooth algebraic variety X, defined over 
the finite field of q = pf elements. The most important 
thing is that the points in these varieties can be 
interpreted as fixed points of an operator, which in this 
case is known, and is called Frobenius automorphism. 
The function is called the Hasse–Weil zeta function, 
and is much simpler than the Riemann zeta function. 
This is because it is a rational function in q–s and its 

zeros – which are finite in number – satisfy an analogue 
of the Riemann hypothesis. The main contributions to 
this field were done by Emil Artin (1898-1962), Helmut 
Hasse (1898-1979), André Weil (1906-1998), Alexander 
Grothendieck (1928-2014), and Pierre Deligne, among 
many others. The Riemann hypothesis in the context 
of algebraic varieties over finite fields was proved by 
Deligne in the 1970s.

■■ AFTERWORD

The Riemann zeta function is a mathematical tool, 
created in the eighteenth and nineteenth centuries, in 
which complex variable analysis plays an important 
role. Riemann’s main goal was, in principle, to 
understand the behaviour of prime numbers. The 
Riemann zeta function is fundamental to understanding 
the distribution of these numbers, but we still lack a 
precise result regarding the position of the zeros of 
this function: i.e., the proof of the Riemann hypothesis. 
Proving it would imply having much more precise 
asymptotic rules in the field of analytical number 
theory; these laws are still currently only conjectures. 
Moreover, the proof of the Riemann hypothesis could 
also have consequences for other disciplines such as 
mathematical analysis or information theory. Thus, 
solving this problem would automatically imply solving 
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The Hilbert–Pólya conjecture gave rise to several physical and artistic interpretations of the Riemann hypothesis. On the left, the German 
mathematician David Hilbert (1862-1943). On the right, the Hungarian mathematician George Pólya (1887-1985).
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many other related ones, which more than justifies the 
million-dollar reward! 

During the nineteenth century we started to see 
that the model provided by the Riemann zeta function 
for the arithmetic study of integers could be extended 
to the arithmetic study of algebraic numbers; it was 
the birth of the Dedekind zeta function, the Dirichlet 
L-function and, in the twentieth century, the Artin 
L-function and the Hecke L-function. The twentieth 
century also witnessed the extension of the zeta 
functions and the L-functions to the study of varieties 
defined over finite fields, which we discussed above. 
But the story does not end here. The Riemann zeta 
function is the model for many other functions, also 
known as zeta functions or L-functions, the study of 
which defines a large part of the challenges proposed 
in twenty-first century mathematics.

In Table 1 we offer a selection of mathematical 
objects with an associated zeta function or L-function. 
Some of the entries in Table 1 constitute fields and 
research programmes which are currently very 

large, such as the functions grouped under the name 
automorphic L-functions, which form the profound 
and extensive Langlands programme, offering a 
highly unifying vision of the Diophantine world. 
Readers who are interested in further information 
should check, among other citations, Bayer & 
Neukirch, 1978; Berry & Keating, 1999; Du Sautoy, 
2003; Euler, 1737; Lagarias & Odlyzko, 1987; and 
Riemann, 1859, for the arithmetic case. For the 
arithmetic-geometric case, Deligne, 1974 and Weil, 
1949; for spectral L-functions, Connes, 1999; Katz 
& Sarnak, 1999; Odlyzko, 2001; and Selberg, 1956, 
and for those related to dynamical systems, Deninger, 
1998 and Lapidus & Van Frankenhuysen, 2001.

As we have seen, many mathematical objects 
have associated zeta functions. Given the amount 
of information they provide, we can interpret zeta 
functions, heterodoxically, as the DNA of these 
objects, given the amount of information they provide. 
We must, however, know how to extract and manage 
that information. 

Zeta functions and arithmetic functions  

Riemann	 ζ(s): integers; prime numbers; functional equations; explicit formulas.

Dirichlet	 L(χ,s): cyclotomic fields; arithmetic progressions; functional equations; explicit formulas.

Dedekind	 ζ(K,s): number fields; prime ideals; functional equations; explicit formulas.

Artin	 L(ρ,s): Galois representations; distribution of prime ideals; explicit formulas.

p-adic	 Leopoldt; Iwasawa; abelian and non-abelian number fields.

Zeta functions and arithmetic-geometric L-functions  

Hasse-Weil	 Z(X,q–s): varieties over finite fields; Lefschetz formulas; functional equations; RH.

Serre	 ζ(X,s), L(X,s): Hodge theory; arithmetic schemes.

Grothendieck	 L(M,s): motives.

p-adic	 Algebraic varieties of number fields; motives.

Automorphic L-functions (Langlands Program) 

Hecke	 L(ψ,s): idele class groups; functional equations.

Jacquet	 L(π,s): Hecke; Shimura; Lie groups; functional equations (standard cases); traces. 

p-adic 	 Automorphic representations of p-adic Lie groups.

Zeta functions and spectral L-functions  

Selberg	 Kleinian groups; closed geodesics; trace formulas; RH; Lie groups.

Connes	 Adelics; dynamic C*-systems 

Stark	 Terras; finite graphs; closed circuits; RH for Ramanujan graphs.

Zeta functions and  dynamic  L-functions	

Nielsen	 Topological spaces; dynamic systems; periodic orbits.

Ruelle	 Smale; compact variety diffeomorphisms; flows; periodic orbits.

Deninger 	 Foliations; Lefschetz formulas.

Table 1. A collection of zeta functions and L-functions, with their research area and most remarkable properties. The letters RH denote 
that a statement analogous to the Riemann hypothesis has been proved in the corresponding context. Source: Pilar Bayer, 2006.
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Proof of the Riemann hypothesis could also have consequences 
for other disciplines such as mathematical analysis or information 
theory.
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