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THE HODGE CONJECTURE 
THE COMPLICATIONS OF UNDERSTANDING THE SHAPE OF GEOMETRIC 
SPACES

Vicente Muñoz

The Hodge conjecture is one of the seven millennium problems, and is framed within differential 
geometry and algebraic geometry. It was proposed by William Hodge in 1950 and is currently a stimu-
lus for the development of several theories based on geometry, analysis, and mathematical physics. 
It proposes a natural condition for the existence of complex submanifolds within a complex mani-
fold. Manifolds are the spaces in which geometric objects can be considered. In complex manifolds, 
the structure of the space is based on complex numbers, instead of the most intuitive structure of 
geometry, based on real numbers.
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■■ COMMUNICATING MATHEMATICS

Mathematics has become a highly technical discipline, 
with many fields and subfields. The language of 
mathematical research is extremely abstract. For this 
reason, when mathematicians are confronted with 
the task of explaining a problem to the general public, 
they notice the chasm between what is currently 
understood as mathematics and the way researchers 
work. However, mathematicians 
recognise the importance of 
disseminating their most notable 
advances and of doing so using 
the most accessible language 
possible. This is why conferences 
with high media exposure are 
held, why honours are awarded to 
mathematicians who have made 
great advances, and prizes are 
offered for the solution of specific 
problems. The seven millennium 
problems are a good example. These are not problems 
for the average person. Instead, they direct work 
towards issues that might be important in the future, 
even though other equally relevant problems could 
have been proposed. No particular deadline for their 
solution is defined («millennium» refers to the start of 
the new millennium, it does not imply that they will 
be unsolved for a millennium). The most remarkable 
feature is that they spur scientific advancement; they 

are the type of problem that promotes the development 
of new theories, and therein lies their value.

The Hodge conjecture is the fifth problem 
proposed by the Clay Mathematics Institute. The 
problem corresponds to the field of geometry (more 
precisely, in mathematical terms, to differential 
geometry and algebraic geometry). The problem was 
originally proposed by the Scottish mathematician 
William Hodge during the International Congress of 

Mathematicians, held in 1950 
in Cambridge, Massachusetts, 
in the United States of 
America (Hodge, 1950). These 
conferences are held every four 
years and are the largest event in 
the field of mathematics. They 
bring different trends up to date 
with the most recent advances 
and the important Fields medals 
are awarded at them. Hodge was 
a plenary lecturer, and in his 

speech he presented the recent – at the time – theory 
of harmonic forms for the study of the topology of 
complex differentiable manifolds, known today as the 
Hodge theory. He also proposed extending a natural 
result of the representativeness of homology classes 
with submanifolds in differentiable manifolds to the 
case of complex manifolds. 

The reader only has to count the number of words 
they find strange in the previous paragraph to realise 
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the level of sophistication of current mathematics. Let 
us introduce those concepts now in order to make the 
formulation understandable.

■■ DIFFERENTIAL GEOMETRY

Geometry is the area of 
mathematics devoted to the 
study of geometric and physical 
spaces, and of figures (objects) 
and their interactions in such 
spaces. Geometry emerged 
in ancient Egypt and was 
further substantially developed 
in ancient Greece. Euclid’s 
geometry books are probably 
the most famous mathematical work in history. 
They describe the basic forms of planes and spaces 
(points, straight lines, polygons) and their interactions 
(movements and intersections). Later, geometry 
turned to curved forms (curves and surfaces) and 
developed in parallel to mathematical analysis. 
Isaac Newton created the concept of the derivative 
of a function to define the tangent vector of a curve. 
The most revolutionary concept appeared with the 

term differentiable manifold, which is the central 
object of differential geometry, and was introduced 
by Bernhard Riemann in the nineteenth century. 
A differentiable manifold is a space that locally 
(around any given point) appears to be a Euclidean 

space of a particular dimension n. 
Earth’s surface is a good example 
of dimension 2. Each region of a 
surface can be drawn on a two-
dimensional map with a grid. A 
point on Earth corresponds to 
a position (x, y) on that map. Of 
course, these maps overlap, and 
the coordinates depend on the 
map, but we can traverse the 
entire surface if we have the 

complete atlas of all the maps that cover it.
The big step for geometry, already in the works 

for centuries and related to doubts regarding the 
inalterability of Euclid’s geometry postulates (which 
would end up leading to non-Euclidean geometries), 
meant realising that this local property does not force 
the entire space to be ℝn. For non-mathematicians, 
ℝ is the straight line of real numbers (each position 
is marked by a real number), and ℝn is the product 

Two spaces that can be obtained from each other with a reversible deformation and without breaking points apart are considered equal. 
In the picture, we observe the deformation of a doughnut into a teacup. Topologically, they are the same space.
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of n real straight lines in n independent directions. 
Therefore, ℝ2 is a plane (with two coordinate axes) 
and ℝ3 is the space (with three coordinate axes). 
Clearly, even though from Earth’s surface it looks 
like we are observing a plane around us, the Earth’s 
globe shape is not that of a plane. Our universe is 
the clearest example. It is a differentiable manifold 
of dimension 3 (here we omit time, and the notion 
of spacetime, in order to simplify our explanation). 
Locally, the universe can be mapped with three 
coordinates, but globally (in its entirety), it can 
have any shape we could imagine. Geometers have 
developed many ways to understand and «observe» 
spaces of three and more dimensions.

An important fact is that one can differentiate 
(find a derivative) on a 
differentiable manifold, and 
this allows us to note down 
any problem with intervening 
differential equations (like 
Newton’s gravitation theory or 
Einstein’s relativity theory). That 
is why we call it «differentiable».

■■ TOPOLOGY AND HOMOLOGY

In order to classify manifolds, we need some 
mathematical properties to distinguish them. These 
are global properties (named so because manifolds 
are all the same locally, and can only differ globally). 
So, what makes a sphere and the surface of a 
doughnut – a torus in mathematics – different? First, 
we must carefully formalise the concept of «being 
different» and «being equal» (with mathematical 
terms such as «diffeomorphic»). Two spaces that 
can be obtained from each other with a reversible 

deformation and without tearing the space apart are 
considered equal. This occurs because both have 
equivalent atlases; that is, the same maps are valid for 
both, changing the scales of distances according to 
the deformations.

The most noteworthy properties that have been 
used to distinguish differentiable manifolds are 
known as topological properties. Topology is the 
branch of mathematics devoted to looking for the 
properties of spaces that can be used to determine 
their shape. It is a relatively recent area, whose 
origins go back to Leonhard Euler, with his famous 
solution to the problem of the Königsberg bridges, 
but its official birth occurred in the twentieth 
century with Henri Poincaré. An important concept 

in topology is homology 
(Poincaré, 1895). The homology 
of a space counts the number 
of holes it has. A sphere and 
torus are different because 
they have a different number of 
holes (and, in fact, a different 
«type» of hole). Intuitively, a 
hole is «something missing» 
from a space, but the space is 

everything we have available and we cannot look for 
anything outside of it, because the space is nowhere 
in particular and there is nothing outside of it (think 
of our universe). The solution to the problem consists 
in looking for the hole in the space surrounding it 
with an object (a polyhedron is used by convention). 
In fact, a k-dimensional hole is defined as a 
polyhedron of dimension k, and the k-polyhedra that 
can be used as the border of a (k + 1)-dimensional 
polyhedron are eliminated, in which case there is 
actually no hole (it would be a fictional hole). 

«HODGE THEORY 

ESTABLISHES A LINK 

BETWEEN MATHEMATICAL 

ANALYSIS AND TOPOLOGY»

Each region of a surface can be drawn on a two-dimensional map with a grid. In the picture, a surface and its map.
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On the left, a hole of dimension k = 2 in a manifold X. On the right, 
an fictional hole.

For example, in the case of the torus we have 
1-dimensional holes given by polyhedra surrounding 
the torus in two directions. The sphere does not have 
these 1-dimensional holes, but it has a 2-dimensional 
hole that can be surrounded by covering the entire 
sphere. Those k-polyhedra are topological; that is, we 
should not consider them as straight lines.

 

On the left, 1-dimensional holes in a torus. On the right, 
a 2-dimensional hole of the sphere is surrounded by a curvilinear 
2-polyhedron to cover the entire sphere.

The holes can be added formally. To do so, we 
allocate coefficients to the faces of the polyhedra. 
The idea is that 2 times a cycle is equivalent to 
allocating it twice very closely together. But we 
could also consider allocating 
it a particular «weight». 
This weight (the coefficient 
allocated to the cycle) can be 
taken as a negative, a rational 
number such as 3/2, or even 
a real number. When we talk 
about homology with rational 
coefficients, we mean that we 
allow them to multiply the 
cycles by a rational coefficient.

A very important result by 
René Thom, which earned him the Fields Medal 
in 1958, states that any k-dimensional hole can be 
determined or «surrounded» by a k-dimensional 
manifold. A submanifold is a manifold within the 
ambient manifold X; for that to happen, its dimension 
k needs to be lower than the dimension n of X. 
Thom’s result has the peculiarity that it requires 
rational coefficients for its homology. Taking the case 

of a torus as an example, its 1-dimensional holes can 
occur for submanifolds of dimension 1; that is, for 
curves (instead of polygons).

■■ HODGE THEORY

Hodge theory connects harmonic forms with 
homology elements, establishing a link between 
mathematical analysis and topology. To understand 
this, let us think about what happens to a unit of heat 
at a point in space. It dissipates and is distributed 
throughout space following what we call the heat 
equation, which has the following shape in three-
dimensional space (t stands for the time and T for 
the temperature):
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The final temperature distribution corresponds to 
the static case (when there is no heat transfer in the 
space), and is determined by the equation
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or the so-called Laplacian equation (in honour 
of Pierre-Simon Laplace). Its solutions are 
called harmonic functions. For an n-dimensional 
space, more coordinates must be allocated. A 
similar process is behind the «dissipation» of 
k-submanifolds. To understand this, we need to 
exchange the functions with k-forms. A k-form is 
a mathematical object that can be integrated into a 

k-manifold, just as a function is 
evaluated at a point (note that 
a point is a 0-manifold). For 
example, the usual integral in 
ℝ3 is noted as ∫ f (x, y, z)dx dy dz, 
and the expression dx dy dz 
is an example of a 3-form.

Hodge’s powerful theory 
states that any type of 
homology (in a closed, finite 
and borderless n-manifold) 
is given by a single harmonic 

form, following a dissipation process analogous to 
that of the heat equation. To do this, we need to use 
real coefficients in the homology. Therefore, the 
holes in a manifold are determined by solutions to 
a very special type of partial differential equation 
called elliptic equations, and which have many very 
useful analytical properties that are studied in depth 
in the field of partial differential equations.
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■■ COMPLEX GEOMETRY

The next step of complexity in 
the abstraction leads us to use 
complex numbers (a redundancy 
in terms!). These numbers are 
noted as C and have the form 
z = x + iy, with x, y being real 
numbers and i =  1  being the 
imaginary unit. It is important to 
take into account that each complex number depends 
on two real numbers. All the squares of real numbers 
are positive, so the equation x2 = –1 does not have a 
solution. The imaginary unit i is an artificially-added 
symbol that fulfils the property i2 = –1. The general 
trend is that when we change the real numbers for 
complex numbers, many mathematical properties 
are simplified and become more uniform. Let us 
remember the fundamental theorem of algebra 
(shown by Carl Friedrich Gauss), which states that 
every polynomial equation has solutions in complex 
numbers, even if there are no solutions among real 
numbers (surprisingly, by adding the solution of an 
equation, all the polynomial equations then have 
solutions). In physics, introducing complex numbers 

is also common to understand real world processes, 
as in the study of electromagnetism. Geometry was 
not going to be any different. Thus, C2 denotes the 
complex two-dimensional space, determined by 
two complex coordinates (z1, z2). Writing z1 = x1 + iy1 
and z2 = x2 + iy2, we deduce that each point in C2 is 
determined by four real coordinates (x1, y1, x2, y2); 
that is, we are now in a real space of dimension 4. 
Similarly, C3 denotes the complex three-dimensional 
space, which has 6 real dimensions. In general, given 
a complex space E, the real dimension of E is twice 
its complex dimension. A complex manifold X is a 
differentiable manifold whose (local) coordinates 
are complex numbers. In complex manifolds, 
spatial intuition is lost because, with the change in 
dimensions, we cannot assimilate them to curves or 
surfaces in the real three-dimensional space. 

The most studied complex manifolds are those 
that can be located in the CN space given as the set of 
points where some polynomials vanish (more precisely, 
they are located in the complex projective space in 
order to obtain closed and borderless manifolds, but 
it is better not to incur into more technical terms 
here). These are called projective varieties and are 
the centre of attention in algebraic geometry. Because 
they are determined by polynomials, all the machinery 
of algebra can be used to obtain their properties 

(including their topological 
properties!). Indeed, the 
confluence of many ideas, theories, 
and arguments in this area is one 
of the characteristics that make 
mathematics beautiful.

Obtaining the conjugate is a 
basic operation with complex 
numbers. If z = x + iy, then its 
conjugate is z- = x - iy (only a sign 
changed). When considering 

differentiable forms in a complex manifold with (local) 
coordinates (z1, z2…, zn), some depend on z variables 
(they are noted as dz1, dz2…, dzn) and some depend on 
conjugated variables z- (noted as dz-1, dz-2…, dz-n). 
However, there are also mixed variables which 
sometimes depend on one variable and in other cases 
on a conjugated variable (for instance: dz1 dz-2 dz-3, 
which combines a complex term and two conjugates). 
In general, the forms are of the type (p, q), with 
p + q = k, containing p complex terms and q conjugated 
terms. For example, dz1 dz-2 dz-3 is a (1,2)-form in 
a complex manifold of dimension 3 (and of real 
dimension 6, if the reader is not lost yet!). Solving 
the harmonic equation for the (p, q)-forms, gives us 
the harmonic (p, q)-forms and, as we have already 

During the International Congress of Mathematicians, held in 1950 in 
Cambridge, William Hodge presented the theory of harmonic forms 
for the study of the topology of complex differentiable manifolds, 
known today as Hodge theory.
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indicated, also the homology elements of type (p, q); 
that is, the holes in the manifold that, because it is 
complex, have dimensions that are partly complex 
and partly conjugated (actually, it has p complex 
dimensions and q conjugated dimensions). Hence, we 
must use complex coefficients in homology (allowing 
the cycles to be multiplied by 
complex numbers). This has a 
very profound consequence that 
in a complex manifold each hole 
of a dimension k has a complex 
dimension p and a conjugated 
dimension q with k = p + q.

It can be proved that if a 
homology is represented by a 
complex submanifold of dimension 
p (and its real dimension is 
therefore 2p), then it is of the type (p, p). In other words, 
its complex and conjugated dimension compensate each 
other. Therefore, complex submanifolds represent holes 
(homology elements) that are rational (integers, in fact) 
and are of the type (p, p).

■■ THE IMPORTANCE OF THE PROBLEM

A conjecture is an open question that is believed to 
be true in some way, although we do not yet know 
a way to prove it. That is why counterexamples, the 
constructions that contradict a statement, are so 
impressive. However, Hodge did not raise the question 
as a conjecture, and there is no consensus on whether 
the conjecture is true or false. Opinions are very 
divided among the mathematicians who think we will 
be able to prove it and those who think it is false. The 
mathematician André Weil (1980) proposed a complex 
4-fold as a possible counterexample, but it too has yet 
to be resolved. The Hodge conjecture stands out above 
other conjectures, such as the Riemann hypothesis 
(also included in the millennium problems), which 
everyone believes to be true.

Here, we outline a modern version that has already 
been simplified over time. It takes into account that 
slightly similar formulations have counterexamples 
(Grothendieck, 1969; Voisin, 2002). For instance, 
the version with integer coefficients is false (Atiyah 
& Hirzebruch, 1962). In any case, Hodge was not 
too precise in his question. He was merely trying to 
motivate research into Hodge theory and complex 
manifolds.

The conjecture is formulated as follows: If X is a 
projective manifold, any class of rational homology of 
type (p, p) can be represented by complex submanifolds 
of the complex dimension p. The formulation is 

proposed as an extension of Thom’s aforementioned 
result, where any class of rational homology of 
dimension k can be represented by a submanifold (a 
real one, which is understood when it is not specified) 
of dimension k. In this case, submanifolds are 
differentiable; that is to say, they are not necessarily 

given by polynomial equations.
The Hodge conjecture1 

is difficult because complex 
submanifolds are very rigid 
objects (since they are defined by 
polynomials). In fact, it is very 
difficult to construct complex 
submanifolds, and there are 
very few of them. Proving that 
submanifolds exist without 
constructing them (a very helpful 

sort of indirect reasoning) has also been difficult. 
The fact that the problem belongs to a confluence area 
between algebraic geometry, differential geometry, and 
mathematical analysis – not to mention its connections 
to arithmetic geometry or to mathematical physics, 
which we have not discussed in here – turn this 
problem into an inexhaustible source of interactions. 
In fact, the importance of a problem is shown in 
the number of theories left along the way before it 
is solved. These theories will remain and open new 
lines of research, themselves useful for proposing new 
questions for the next millennium. 
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